赌博网-赌球网址-体育_百家乐官网_新全讯网22335555

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

“數通古今,學貫中外”學術講座第六十五期預告【王鳳雨教授】

供稿: 曹鵬(數學與統計學院) 編輯: 數學學院 高冰 時間:2014-04-14

時間:4月15日(周二)下午3:30至4:30

地點:研究生樓103

報告人:王鳳雨教授:北京師范大學教授

Title: Integration by Parts Formula and Shift Harnack Inequality for Stochastic Equations

Abstract: A new coupling argument is introduced to establish Driver's integration by parts formulaand shift Harnack inequality. Unlike known coupling methods where two marginal processes withdifferent starting points are constructed to move together as soon as possible, for the new-type coupling the two marginal processes start from the same point but their difference is aimed to reach a fixed quantity at a given time. Besides the integration by parts formula, the new coupling method is also efficient to imply the shift Harnack inequality. Differently from known Harnack inequalities where the values of a reference function at different points are compared, in the shift Harnack inequality the reference function, rather than the initial point, is shifted. A number of applications of the integration by parts and shift Harnack inequality are presented. The general results are illustrated by some concrete models including the stochastic Hamiltonian system where the associated diffusion process can be highly degenerate, delayed SDEs, and semi-linear SPDEs.
 

百家乐事一箩筐的微博| 德州扑克外挂| 988百家乐娱乐| 娱乐城简介| 浦江县| 百家乐交流群号| 盈得利| 济州岛百家乐官网的玩法技巧和规则| 百家乐赌博技巧论坛| 赌博的危害| 百家乐8点直赢| 北京百家乐官网网上投注| 威尼斯人娱乐开户送18| 十六浦百家乐官网的玩法技巧和规则| 真钱百家乐赌博| 全讯网百家乐的玩法技巧和规则| 百家乐官网黄金城游戏大厅| 明升国际娱乐| 百家乐公式与赌法| BB百家乐官网HD| 皇冠网足球开户| 百家乐足球| 明升信誉| 百家乐庄闲出现几| 百家乐玩法注意事项| 大发888官方 df888 gfxzylc8| 百家乐投注法则| 南宁百家乐官网赌机| 威尼斯人娱乐城送钱| 微信百家乐官网群资源| 百家乐官网号论坛博彩正网| 顶级赌场连环夺宝下注有什么窍门| 百家乐怎样玩才能赢| 怎样玩百家乐官网的玩法技巧和规则| 正品百家乐玩法| 百家乐规则博彩正网| 百家乐官网全部规| 百家乐官网游戏程序出售| 网上真钱轮盘| 娱乐城注册送白菜| 百家乐轮盘一体机厂家|