赌博网-赌球网址-体育_百家乐官网_新全讯网22335555

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

9月2日物理學院“博約學術論壇”系列報告第39期

時間:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)
百家乐官网跟路技巧| 高级百家乐官网桌布| 百家乐官网视频交友| 百家乐开户送彩网址| 百家乐压分技巧| 英皇国际娱乐| 累积式百家乐官网的玩法技巧和规则| 威尼斯人娱乐城线路lm0| 百家乐官网庄闲路| 大赢家即时比分| 百家乐游戏发展| 百家乐官网真人游戏网| 2024年九运| 赌博百家乐官网探讨| 大发888真人网址| 百家乐怎么赢博彩正网| 百家乐官网博彩网排名| 七胜百家乐娱乐城总统网上娱乐城大都会娱乐城赌场 | 风水24山辛山乙| 新巴尔虎右旗| 百家乐合作代打| 免费百家乐官网在线| 易盈娱乐| E世博百家乐的玩法技巧和规则| 捷豹百家乐官网的玩法技巧和规则| 宁化县| 大发888娱乐场官方下载| 百家乐小型抽水泵| 百家乐官网如何切牌好| 大发888大发888娱乐城| 做生意风水方向怎么看| 最好的百家乐官网投注| 澳门凯旋门赌场| 爱婴百家乐的玩法技巧和规则| 做生意的门的方向| 百家乐官网实战路| 喀喇| 京城国际娱乐城| 大发888官方df888gfxzylc8| 百家乐玩家技巧分享| 九州百家乐官网的玩法技巧和规则|