赌博网-赌球网址-体育_百家乐官网_新全讯网22335555

今天是
今日新發(fā)布通知公告1條 | 上傳規(guī)范

數(shù)學(xué)與統(tǒng)計(jì)學(xué)院"21世紀(jì)學(xué)科前沿"系列學(xué)術(shù)報(bào)告預(yù)告

Second-order Least Squares Method for High-dimensional Variable Selection

作者: ?? 來源:數(shù)學(xué)學(xué)院?? 發(fā)布日期:2015-06-01
報(bào)告題目:Second-order Least Squares Method for High-dimensional Variable Selection
報(bào)告時(shí)間:2015年6月2日下午3:00-4:00
報(bào)告地點(diǎn):良鄉(xiāng)1-208
報(bào)告人:Professor Liqun Wang, Department of Statistics, University of Manitoba, Canada
摘要:High-dimensional variable selection problems arise in many scientific fields, including genome and health science, economics and finance, astronomy and physics, signal processing and imaging. In statistics, various regularization methods have been studied based on either likelihood or least squares principles. In this talk, I will propose a regularized second order least squares method for variable selection in linear or nonlinear regression models. This method is based the first two conditional moments of the response variable given on the predictor variables. It is asymptotically more efficient than the ordinary least squares method when the regression error has nonzero third moment. Consequently the new method is more robust against asymmetric error distributions. I will demonstrate the effectiveness of this method through Monte Carlo simulation studies. A real data application will be presented to further illustrate the method.
百家乐连线游戏下载| 百家乐趋势图怎么看| 百家乐官网体育博彩| 百家乐如何投注技巧| 百家乐技巧| 新星娱乐城| 百家乐娱乐城怎么样| 评测百家乐官网博彩网站| 百家乐上分器定位器| 驻马店市| 百家乐视频二人麻将| 海安县| 百家乐现金投注信誉平台| 百家乐官网连赢的策略| 威尼斯人娱乐上网导航| 玩百家乐技巧看路| 百家乐官网信誉好的平台| 大发888游戏| A8百家乐官网的玩法技巧和规则 | 华亭县| 大发888娱乐场网页版| 真人百家乐官网蓝盾娱乐网| 明升投注 | 大发888下载 df888| 网上玩百家乐官网游戏有人挣到钱了吗 | 百家乐四式正反路| 百家乐官网投注玩多少钱| 大发888官网黄金版| 百家乐官网桌小| 大发888手机版| 百家乐官网玩揽法大全| 阳曲县| 嘉年华百家乐的玩法技巧和规则| 百家乐官网去哪里玩最好| 大发888官网游| 百家乐博娱乐场开户注册| 百家乐平台哪个有在线支付呢| 博久百家乐官网论坛| 百家乐群shozo权威| 百家乐玩法教程| 百家乐赌博出千|