赌博网-赌球网址-体育_百家乐官网_新全讯网22335555

今天是
今日新發布通知公告0條 | 上傳規范

物理學院“博約學術論壇”系列報告第 141 期

發布日期:2018-01-23

題目:Potein Thin Film Memory for Mobile Devices
報告人:Prof. V. Renugopalakrishnan(Northeastern University and Harvard Medical School)
時 間:2018年1月26日(星期五)上午10點
地 點:中教樓610會議室
報告摘要
Abstract:  In nanotechnology, protein-surface interactions are instrumental in the assembly of interfacial protein constructs such as sensors, tissue scaffolds for artificial cartilage, activators and other functional components. Bacteriorhodopsin (bR), a 7 helical trans-membrane protein, has been deposited on TiO2 and Au substrates separately. An ultraviolet photoemission experiment (UPS) reveals the energy-level alignment and the Fermi energy of the bR/TiO2 system while x-ray absorption measurements (XANES) show that in bR the lowest unoccupied molecular orbital (LUMO) is located 2 eV above the highest occupied molecular orbital (HOMO). A separate XPS and TOF-SIMS study has been conducted to characterize the attachment of bR to Au substrate confirm successful Thiol-Gold bond formation with films thicker than 10 nm. For retinal, the HOMO-LUMO gap was found to be 2.49 eV from UPS and XANES measurements. DFT calculations are also being used to compute the HOMO-LUMO gap of free retinal, Spiro OMe-TAD and Lead Halide Perovskite. Using the G-311G basis set, the calculated HOMO-LUMO gap was 2.69 eV for Retinal and -1.1 for Spiro respectively. The calculated HOMO-LUMO gap is about 2.6 eV. At the Hartree-Fock level this gap is 7.9 eV, therefore correlation plays an important effect on the gap size. The chromophore can be stabilized in the bR by the HOMO-LUMO interaction with the protein environment. As a result the HOMO-LUMO gap of the chromophore is expected to shrink inside the tight bR protein pocket. Based on the spectroscopy results and DFT Calculation, a new FTO/TiO2/perovskite/Spiro//bR/Au Solar cell architecture has been proposed. Since the Perovskite is already a form of sensitization, the role of the CdSe QDs in terms of their spintronic functionality will now be performed by the organohalide Perovskite in the proposed tandem solar cell architecture as optical orientation of excitons and optical detection of spin-polarized exciton quantum beating in polycrystalline films of the hybrid perovskite CH3NH3PbClxI3x has recently been demonstrated.

簡歷
Prof. V. Renugopalakrishnan, American Biophysicist, “Renu” and his group at the Children’s Hospital / Harvard Medical School and Northeastern University focuses on the interface between protein engineering and nanotechnology. He has been on Harvard faculty since 1984, starting from Assistant Professor to a Professor. In recent years his laboratory has been targeting proteins as intelligent and innovative biomaterials in solar cells, fuel cells, very high density data storage, and tagged on to CNT/Graphene for directed drug delivery, sensors. He teaches and is guiding MD PhD program at Walter Bradford Cannon Society, First Year MD Students, “New Pathway in Medical Education” as a part of Harvard-MIT Health Sciences program and is currently spearheading a campus-wide effort in bio inspired devices. He is funded by NSF, US Air Force, NIH. He was Wallace H Coulter Chair and Professor at the University of Florida, Miami. He had been a visiting Professor in Denmark, Taiwan, India. He obtained his B.Sc. from the Madras University, entered graduate school in the Dept. of Chemistry, Columbia University, New York, NY and Rockefeller University, New York, NY working with Prof Harold C Urey, Nobel Chemistry Laureate and Prof. Barbara Low and obtained his Ph.D. in Biophysical Sciences from State University of New York, Buffalo, New York. He is the author of more than 250 publications, 2 monographs – 1991, 2006, 1 Graduate Level Textbook in Bionanoscience (under development), and member of academies. He was the Editor in-Chief, Journal of Bionanoscience, Associate Editor, Journal of Nanoscience and Nanotechnology and serves on 6 Editorial Boards of Journals. His scientific lineage or ancestry traces its origin to Prof G N Ramachandran, FRS, Biochemistry to Nobel Laureate Prof. Stanford Moore, Rockefeller University, New York, NY; experimental studies of protein structural biology to Prof Dan Wesley Urry, Univ. of Minnesota, Minneapolis; Prof Melvin J Glimcher, Harvard to mineralization of connective tissue macromolecules, to Prof. Richard Collins Lord, MIT on Raman Spectroscopy of Proteins. He along with Dr. Sowmya Viswanathan is organizing one of the largest programs focused on Bio inspired Systems and Devices


聯系方式:物理學院辦公室 (68913163)
邀請人: 肖文德 副教授
網    址:http://physics.bit.edu.cn/


 


嘉兴太阳城大酒店| 乌海市| 百家乐真钱路怎么看| 百家乐庄闲和收益| 百家乐群lookcc| 化隆| 百家乐官网怎么玩请指教| 哪里有百家乐游戏下载| 六合彩走势图| 百家乐官网百家乐官网视频游戏世界| 优博家百家乐娱乐城| 亿酷棋牌世界下载手机版| 百家乐官网破解赌戏玩| 威尼斯人娱乐场28gxpjwnsr| 确山县| 百家乐资金注码| 太阳城官网| 百家乐官网开户过的路纸| 大发888娱乐城打发888打发8| 百家乐官网冯氏坐庄法| 百家乐投注玩多少钱| 优博娱乐在线| 百家乐官网园首选| 日博bet365| CEO百家乐现金网| 屯昌县| 真人百家乐海立方| 博彩网站评级| 百家乐龙虎斗扎金花| 百家乐官网历史路单| 百家乐太阳城娱乐城| 百家乐官网对打反水| 百家乐2号说名书| 葵青区| 乐博娱乐城| 网络百家乐路单图| 在线娱乐场| 百家乐赌博平台| 赌场百家乐官网破解| 大发888-娱乐场| 百家乐娱乐城新闻|