赌博网-赌球网址-体育_百家乐官网_新全讯网22335555

今天是
今日新發布通知公告1條 | 上傳規范

【百家大講堂】第127期:High-speed Precision Motion Control via Basis Functions: Nanopositioning Applications

發布日期:2018-11-01

  講座題目High-speed Precision Motion Control via Basis Functions: Nanopositioning Applications

  報 告 人:Qingze Zou 鄒清澤 教授

  時  間2018年11月7日(周三)9:00

  地  點:中關村校區研究生教學樓5樓創新基地(電梯出口北側)

  主辦單位:研究生院、自動化學院

  報名方式:登錄北京理工大學微信企業號---第二課堂---課程報名中選擇百家大講堂第127期:High-speed Precision Motion Control via Basis Functions: Nanopositioning Applications”

【主講人簡介】

  鄒清澤,新澤西州立羅格斯大學,機械與航天系教授,曾任職于愛荷華州立大學機械工程系。鄒教授于2003年在華盛頓大學機械工程系獲得博士學位,其研究興趣包括:基于學習的高精度運動控制,高速掃描探頭顯微技術,軟體及活體樣本的高速、寬頻納米機械測試、高速納米制造、智能及軟執行機構的先進控制、工業機器人控制。

  鄒教授于2009年獲得美國國家科學基金會頒發的職業獎,2010年獲得美國自動控制委員會頒發的O Hugo Schuck最佳論文獎。鄒教授曾任Journal of Dynamic Systems, Measurement and Control編輯,現任IEEE/ASME Transactions on Mechatronics, Control Engineering Practices, Mechatronics期刊的技術編輯. 鄒教授是美國機械工程師協會的會士。

  

Qingze Zou is a Professor in the Department of Mechanical and Aerospace Engineering of Rutgers, the State University of New Jersey. Priorly he had taught in the Mechanical Engineering Department of Iowa State University. He obtained his Ph.D. in mechanical engineering from the University of Washington, Seattle, WA in 2003. His research interests include learning-based precision motion control, high-speed scanning probemicroscopy, rapid broadband nanomechanical mapping of soft and live samples, high-speed nanofabrication, advanced control of smart and soft actuators, and industrial robotic manipulattion. He received the NSF CAREER award in 2009, and the O Hugo Schuck Best Paper Award from the American Automatic Control Council in 2010. He is a past Associate Editor of ASME Journal of Dynamic Systems, Measurement and Control, and currently a Technical Editor of IEEE/ASME Transactions on Mechatronics, Control Engineering Practices, and Mechatronics. He is a Fellow of ASME.
 

【講座摘要】

  高速精密運動控制在很多應用中是必不可少的,從納米級光刻,掃描探針顯微鏡(SPM),到增材制造等應用場合,都對運動控制的高速和高精度提出越來越高的要求。然而,這些應用帶來的挑戰性問題還沒有得到令人滿意的解決:需要在存在不利的非線性和動態效應的情況下(例如非最小相位零點)實現高速高精度軌跡跟蹤、提高時變、不確定性系統的魯棒性。需要跟蹤的期望軌跡可以是任意的、高速的、無先驗知識的,跟蹤軌跡與輸出轉換之間可能存在非周期性切換。在本次報告中,我們將介紹一種基于學習的方法來應對這些挑戰,這種方法是基于迭代學習控制(ILC)框架和疊加原理的組合與擴展。我們將通過高速納米定位、高速SPM成像和基于探針的納米加工等實驗過程進行討論,并展示相關結果。

  
Abstract High-speed precision motion control is essential in a wide variety of applications, ranging from nanoscale photolithography, through scanning probe microscopy (SPM), to additive manufacturing. Continuously increasing demands for both high speed and precision in these applications, however, bring challenges that haven’t been satisfactorily resolved yet: Both high-speed precision tracking and good robustness against system variation and uncertainties need to be achieved—in the presence of adverse nonlinear and dynamics effects such as nonminumum-phase zeros; The desired trajectory to be tracked is arbitrary, at high-speed, and unknown a priori; And non-periodic switching between trajectory tracking and output transition might be involved in the operations. In this talk, we will present a learning-based approach to tackle these challenges, based on the combination and extension of the framework of iterative learning control (ILC) and the superposition principle. Experimental results in high-speed nanopositioning, and high-speed SPM imaging and probe-based nanofabrication will be discussed as illustrative examples.


百家乐官网连赢的策略| 百家乐官网平台网| 百家乐反缆公式| 免费百家乐追号软件| 大佬娱乐城怎么样| 百家乐官网赌博筹码大不大| 灌南县| 百家乐官网网络游戏信誉怎么样| 百家乐桌手机套| 澳博娱乐| 百家乐官网是娱乐场| 棋牌捕鱼| 百家乐官网庄多还是闲多| 伯爵百家乐的玩法技巧和规则| 网络百家乐官网的陷阱| 百家乐正品地址| 伟博百家乐官网现金网| 机器百家乐心得| 大发888下载 17| 百家乐官网正品地址| 百家乐官网游戏下载| 太阳城假日酒店| 太原百家乐官网的玩法技巧和规则 | 网页百家乐的玩法技巧和规则| 百家乐官网正网包杀| 苹果百家乐的玩法技巧和规则| 安桌百家乐官网游戏百家乐官网 | 杨筠松古法风水24| 真人娱乐城排行榜| 百家乐麻关于博彩投注| 百家乐官网投注技巧公式| 大发888充钱| 百家乐视频双扣| 金塔县| 百家乐现金网最好的系统哪里有可靠吗| 百家乐官网游乐园| 威尔斯人线上娱乐| 做生意门口朝向| 百家乐官网路单用处| 大发888娱乐场下载注册| 最可信百家乐官网娱乐城|