赌博网-赌球网址-体育_百家乐官网_新全讯网22335555

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

滦平县| 盈禾娱乐城| 威尼斯人娱乐游戏| 百家乐QQ群娱乐| 大发888体育注册| 网上赌百家乐官网正规吗| 百家乐官网号破| 大发888客户端| 长宁区| 百家乐正网包杀| 大发888微信公众号2| 百家乐官网平台下载| 澳盈88投注| 百家乐官网与龙虎斗怎么玩| 足球百家乐投注计算| 二八杠单机游戏| 百家乐官网荷官培训| 大佬百家乐的玩法技巧和规则| 金榜百家乐现金网| 威尼斯人娱乐城导航网| 百家乐官网赌博机玩法| 金彩百家乐的玩法技巧和规则 | 大发888老虎机手机版| 百家乐官网游戏真钱游戏| 做生意门口禁忌| 足球皇冠大全| 定制百家乐官网桌子| 大发888赢速通充值| 百家乐官网怎么才能包赢| 百家乐官网水晶筹码价格| 永利高百家乐怎样开户| 碧桂园太阳城户型图| 百家乐官网最新的投注方法| 澳门百家乐的玩法技巧和规则| 大发888游乐城| 百家乐官网赢钱海立方| 百家乐追注法| 百家乐官网连开6把小| 大发888娱乐城下栽| 伟易博百家乐官网娱乐城 | 菲律宾百家乐官网太阳城|