赌博网-赌球网址-体育_百家乐官网_新全讯网22335555

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

百家乐会骗人吗| KTV百家乐官网的玩法技巧和规则 王子百家乐官网的玩法技巧和规则 | 百家乐看澳门| 百家乐官网投注法则| 百家乐娱乐人物| 网上真钱娱乐平台| 百家乐棋牌交友中心| 郧西县| 百家乐官网真人娱乐场| 叶氏百家乐平注技巧| 百家乐官网自动算牌软件| 利博百家乐的玩法技巧和规则| 开16个赌场敛财| 百家乐双倍派彩的娱乐城| 百家乐官网投注方法| 大发888娱乐网下 | 大发888娱乐场官网官方下载| 百家乐官网是多少个庄闲| 在线百家乐纸牌| 大发888老虎机游戏| 百家乐官网大小点桌子| 大发888网页在线游戏| 最好的百家乐官网博彩公司| 大发888真钱娱乐游戏博彩| 百家乐电子作弊器| 百家乐官网庄闲比率| 百家乐洗码全讯网| 缅甸百家乐官网娱乐| 大发888娱乐场df888| 缅甸百家乐官网赌| 百家乐官网是骗人的| bet365娱乐场注册| 波音百家乐现金网投注平台排名导航| 长兴县| 威尼斯人娱乐棋牌| 至尊国际娱乐| VIP百家乐-挤牌卡安桌板| 漳州市| 百家乐稳赢秘笈| 百家乐投注平台| 太阳百家乐官网网址|