赌博网-赌球网址-体育_百家乐官网_新全讯网22335555

今天是
今日新發(fā)布通知公告0條 | 上傳規(guī)范

“數(shù)通古今,學貫中外”系列講座【Renming-Song】

作者:高冰 ?? 來源:數(shù)學學院?? 發(fā)布日期:2012-07-20

主講人:Renming-Song
講座題目:Harnack principle for symmetric stable processes and subordinate Brownian motion
時  間:2012年7月23,24,25, 27日上午10:40~12:00, 及7月30, 31日上午9:00~11:00.
地  點:研究生樓209A
主講人介紹
  Renming-Song received the B.S. degree in mathematics in 1983 and M.S. degree in Mathemtics in 1986, both from Hebei University, Baodin, China. He received his Ph.D. degree in Mathematics from the University of Florida, Gainesville in 1993. He was a visiting assistant professor at Northwestern University and the University of Michigan before moving to the University of Illinois in 1997, where he is a Professor of Mathematics since 2009.
  His research interests include stochastic analysis, Markov processes, potential theory and financial mathematics. Renming Song has published more than 77 research papers, in top mathematical Journals.
主要內(nèi)容:Recently many breakthroughs have been made in the potential theory of symmetric stable processes and subordinate Brownian motions. In all these recent developments, the boundary Harnack principle played an essential role. In this series of lectures I plan to give a self-contained account of the boundary Harnack principle for symmetric stable processes. Then I will extend the argument to obtain the boundary Harnack principle
for a large class of subordinate Brownian motions.

Here are some references:

[1]. K. Bogdan. The boundary Harnack principle for the fractional Laplacian. Studia Math. (1997), 43--80.
[2]. P. Kim, R. Song and Z. Vondracek. Boundary Harnack Principle for Subordinate Brownian Motions. Stoch. Proc. Appl. 119 (2009), 1601--1631.
[3]. P. Kim, R. Song and Z. Vondracek. Potential theory of subordinate Brownian motions revisited. To appear in Stochastic Analysis and Applications to Finance--Essays in Honour of Jia-an Yan, edited by Tusheng Zhang and Xunyu Zhou. World Scientific,2012.
[4]. R. Song. Potential theory of subordinate Brownian motions.
http://open.nims.re.kr/download/probability/song.pdf
[5]. R. Song and J.-M. Wu. Boundary Harnack inequality for symmetric stable processes. J. of Funct. Anal. 168 (1999),403-427.


做生意的好风水好吗| 网上百家乐游戏玩法| 百家乐官网投注| 大发888现金存款| 凯斯网百家乐官网的玩法技巧和规则 | 足球心水论坛| 百家乐游戏机的玩法| 网络百家乐官网破解平台| 百家乐生活馆| 百家乐官网游戏机出千| 二八杠游戏平台| 女神百家乐官网的玩法技巧和规则| 棋牌室营业执照| 乐天堂百家乐娱乐| 百家乐单双打法| 网上百家乐官网怎么赌能赢钱| 全讯网| 狮威百家乐赌场娱乐网规则| 金榜百家乐官网的玩法技巧和规则| 百家乐官网专业赌徒| 大发888官方6222.| 百家乐网站东方果博| 百家乐官网永利娱乐场| 上虞市| KK百家乐娱乐城 | 百家乐有电脑游戏吗| 网上百家乐公司| 最好百家乐官网的玩法技巧和规则 | 百家乐稳一点的押法| 百家乐官网tt娱乐平台| 新葡京国际娱乐城| 棋牌英雄传| 百家乐单机版的| 百家乐赌场怎么玩| 百家乐官网网站| 网上百家乐官网是现场吗| 百家乐官网多少点数算赢| 百家乐网址| 博彩通排名| 大发888开户注册网站| 圣淘沙百家乐的玩法技巧和规则|