赌博网-赌球网址-体育_百家乐官网_新全讯网22335555

今天是
今日新發布通知公告1條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

來源:   發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

百家乐娱乐平台备用网址| 百家乐机器手怎么做弊| 赌博百家乐官网经验网| 银泰百家乐龙虎斗| 瑞博国际娱乐| 百家乐线上代理网站| 尊龙国际娱乐网| 百家乐官网玩法及细则| 可以玩百家乐的博彩网站| 攀枝花市| 百家乐赌博故事| 百家乐官网线上游戏| 郑州百家乐的玩法技巧和规则| 新葡京百家乐官网娱乐城 | 一起游乐棋牌下载| 菲律宾太子娱乐城| 真人百家乐开户须知| 维也纳国际娱乐城| 百家乐软件代理| 百家乐官网长t恤| 荔波县| 加州百家乐的玩法技巧和规则| 菲律宾百家乐官网排行| 大发888赌场 游戏平台| 诚信百家乐在线平台| 百家乐官网棋牌交| 澳门美高梅| 属兔做生意门面房朝向| 吉首市| 大发888娱乐城 手机版| 真人百家乐分析软件是骗局| 网上百家乐官网网| 百家乐官网投注网站| 百家乐游戏图片| 百家乐官网双峰县| 金百亿百家乐官网娱乐城| 利来| 大发888充值网站| 百家乐大转轮真人视讯| 百家乐试玩平台| 专业百家乐官网软件|