赌博网-赌球网址-体育_百家乐官网_新全讯网22335555

今天是
今日新發布通知公告1條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

來源:   發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

CEO百家乐官网娱乐城| 现金游戏网| 火箭百家乐的玩法技巧和规则 | 八大胜娱乐城| 自贡百家乐官网赌场娱乐网规则 | 大发888娱乐城动态| 注册百家乐官网送彩金| 百家乐最保险的方法| 金宝博网址| 英皇百家乐官网的玩法技巧和规则 | 澳门百家乐威尼斯| 皇冠最新投注网| 手机百家乐官网能兑换现金棋牌游戏| 大发888安装需要多久| 博必发百家乐官网的玩法技巧和规则| 大发888棋牌下载| 阿玛尼百家乐官网的玩法技巧和规则| 大发888 casino下载| 百家乐官网技巧方法| 百家乐任你博赌场娱乐网规则| 百家乐官网投注平台信誉排名| 百家乐官网网址| 申请百家乐官网会员送彩金| 大发888娱乐城手机版| 真人百家乐官网娱乐场开户注册 | 百家乐赌具哪里最好| 破解百家乐| 百家乐翻天qvod粤语| 百家乐官网博彩博彩网| 九州百家乐的玩法技巧和规则| 真钱百家乐官网开户试玩| 威尼斯人娱乐成| 模拟百家乐官网下| 易博彩票网| 真人百家乐大转轮| 大世界百家乐官网娱乐平台| 蜀都棋牌游戏大厅| 百家乐电脑上怎么赌| 昆明百家乐官网装修装潢有限公司| 大发888设置| 百家乐真人游戏网|